Intrinsic Lipschitz Graphs in Heisenberg Groups and Continuous Solutions of a Balance Equation

نویسندگان

  • Francesco Bigolin
  • Laura Caravenna
  • Francesco Serra Cassano
  • FRANCESCO BIGOLIN
  • LAURA CARAVENNA
  • FRANCESCO SERRA CASSANO
  • SERRA CASSANO
چکیده

In this paper we provide a characterization of intrinsic Lipschitz graphs in the subRiemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation φy + [φ/2]t = w, where w is a bounded function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothness of Lipschitz Minimal Intrinsic Graphs in Heisenberg Groups

We prove that Lipschitz intrinsic graphs in the Heisenberg groups Hn, with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

متن کامل

Smoothness of Lipschitz minimal intrinsic graphs in Heisenberg groups Hn, n > 1

We prove that Lipschitz intrinsic graphs in the Heisenberg groups Hn, with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

متن کامل

ar X iv : 0 80 4 . 34 08 v 1 [ m at h . A P ] 2 1 A pr 2 00 8 SMOOTHNESS OF LIPSCHITZ MINIMAL INTRINSIC GRAPHS IN HEISENBERG GROUPS

We prove that Lipschitz intrinsic graphs in the Heisenberg groups H , with n > 1, which are vanishing viscosity solutions of the minimal surface equation are smooth.

متن کامل

Distributional Solutions of Burgers’ Equation and Intrinsic Regular Graphs in Heisenberg Groups

In the present paper we will characterize the continuous distributional solutions of Burgers’ equation such as those which induce intrinsic regular graphs in the first Heisenberg group H ≡ R, endowed with a leftinvariant metric d∞ equivalent to its CarnotCarathéodory metric. We will also extend the characterization to higher Heisenberg groups H ≡ R.

متن کامل

Intrinsic Lipschitz Graphs in Heisenberg Groups

In the last few years there have been a fairly large amount of work dedicated to the study of intrinsic submanifolds of various dimension and codimension inside the Heisenberg groups H or more general Carnot groups. For example intrinsically C surfaces, rectifiable sets, finite perimeter sets, various notions of convex surfaces have been studied. Here and in what follows, intrinsic will denote ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012